Data-Driven Stochastic Optimization for Power Grids Scheduling under High Wind Penetration

Wei Xie Rensselaer Polytechnic Institute

Joint with Yuan Yi, Zhi Zhou (Argonne), Pu Zhang

OUTLINE

- Introduction
- 2 Data-Driven Stochastic Unit Commitment
- 3 Two-Phase Optimization Procedure
- Case Studies
- Conclusions

Two-Stage Stochastic Unit Commitment (SUC)

- Suppose that F^c is the underlying "correct" stochastic model characterizing the uncertainty of wind power generation ξ.
- We consider the two-stage stochastic unit commitment problem

$$\min_{\mathbf{u}} G(\mathbf{u}) \equiv C_1 \mathbf{u} + \mathsf{E}_{\boldsymbol{\xi} \sim F^c} \left[\min_{\mathbf{y}} C_2 \mathbf{y}(\mathbf{u}, \boldsymbol{\xi}) \right]
s.t. \qquad A\mathbf{u} \leq B
\qquad H\mathbf{u} + Q\mathbf{y}(\mathbf{u}, \boldsymbol{\xi}) \leq M(\boldsymbol{\xi})$$

Current Practice

- However, F^c is unknown and estimated by finite real-world data. Denote the input model estimate as \widehat{F} .
- The empirical SUC considers

$$\min_{\mathbf{u}} \widehat{G}(\mathbf{u}) \equiv C_1 \mathbf{u} + \mathsf{E}_{\underset{\mathbf{y}}{\boldsymbol{\xi}} \sim \widehat{F}} \left[\min_{\mathbf{y}} C_2 \mathbf{y}(\mathbf{u}, \boldsymbol{\xi}) \right]
s.t. \qquad A\mathbf{u} \leq B
\qquad H\mathbf{u} + Q\mathbf{y}(\mathbf{u}, \boldsymbol{\xi}) \leq M(\boldsymbol{\xi})$$

ullet Since E [min_y $C_2 y(u, \xi)$] has no closed-form, the SAA is often used

$$\min_{\mathbf{u}} \bar{G}(\mathbf{u}) = C_1 \mathbf{u} + \frac{1}{5} \sum_{s=1}^{5} \left[\min_{\mathbf{y}} C_2 \mathbf{y}(\mathbf{u}, \boldsymbol{\xi}_s) \right]$$

It introduces the finite sampling error.

- There are three sources of uncertainties, including
 - Stochastic Uncertainty: characterized by F^c
 - Model Estimation Uncertainty: unknown F^c is estimated by finite real-world data
 - Finite Sampling Error: induced by using SAA
- The current practice on SUC ignores the input model estimation uncertainty and finite sampling error.

Data-Driven Stochastic Unit Commitment

ullet Given the valid historical data, denoted by \mathcal{D} , the posterior predictive distribution

$$f^{p}(\boldsymbol{\xi}) \equiv p(\boldsymbol{\xi}|\mathcal{D}) = \int p(\boldsymbol{\xi}|F)p(F|\mathcal{D})dF$$

can quantify the forecasting uncertainty, accounting for inherent wind power stochastic uncertainty and model estimation error.

• We propose the data-driven SUC,

$$\min_{\mathbf{u}} G^{p}(\mathbf{u}) \equiv C_{1}\mathbf{u} + \mathsf{E}_{\boldsymbol{\xi} \sim F^{p}} \left[\min_{\mathbf{y}} C_{2}\mathbf{y}(\mathbf{u}, \boldsymbol{\xi}) \right]$$
s.t.
$$A\mathbf{u} \leq B$$

$$H\mathbf{u} + Q\mathbf{y}(\mathbf{u}, \boldsymbol{\xi}) \leq M(\boldsymbol{\xi})$$

Our data-driven SUC can be applied to both parametric and nonparametric situations.

- If the parametric family of F^c is known, the posterior of model parameters $p(\theta|\mathcal{D})$ can characterize the model estimation error.
- It can be combined with nonparametric probabilistic forecast; for example the infinite state Markov-switching autoregressive (IMSAR)

$$f(\xi_t | \xi_{[1:t-1]}, F)$$

$$= \sum_{i=1}^{+\infty} p(s_t = i | \xi_{[1:t-1]}) h(\xi_t | \theta_{s_t}, \xi_{[1:t-1]}, s_t = i)$$

with

$$p(s_t = i | \boldsymbol{\xi}_{[1:t-1]}) = \sum_{j=1}^{+\infty} p(s_t = i | s_{t-1} = j) p(s_{t-1} = j | \boldsymbol{\xi}_{[1:t-1]})$$

Two-Phase Data-Driven SUC Optimization Procedure

- Step (0) Specify the total budget T (number of second-stage economic dispatch problems) for second phase selection.
- Step (1) Use L CPUs to solve the SAA approximated SUC problems in parallel, and obtain the optimal candidate decisions $\hat{\mathbf{u}}_1^{\star}, \dots, \hat{\mathbf{u}}_L^{\star}$.
- Step (2) Add the additional ΔT resource to $\widehat{\mathbf{u}}_1^\star, \ldots, \widehat{\mathbf{u}}_L^\star$

$$\frac{N_i}{N_j} = \left(\frac{\delta_j}{\delta_i}\right)^2, i, j \neq b$$

$$N_b = \sigma_b \sqrt{\sum_{\ell=1, \ell \neq b}^L \frac{N_\ell^2}{\sigma_\ell^2}},$$

where
$$\sigma_\ell^2 = \text{Var}\left[\min_{\mathbf{y}} C_2 \mathbf{y}(\widehat{\mathbf{u}}_\ell^\star, \boldsymbol{\xi})\right]$$
 and $\delta_\ell \equiv \frac{\tilde{\mathcal{G}}^p(\widehat{\mathbf{u}}_\ell^\star) - \tilde{\mathcal{G}}^p(\widehat{\mathbf{u}}_b^\star)}{\sigma_\ell}$.

- Step (3) Update the best candidate $\widehat{\mathbf{u}}_b^\star \equiv \operatorname{argmin}_{\ell=1,\dots,L} \bar{G}^p(\widehat{\mathbf{u}}_\ell^\star)$.
- Step (4) Repeat Steps (2) and (3) until reaches to the budget. Return $\hat{\mathbf{u}}_b^{\star}$.

Case Studies

The six bus system is used to study the performance of our approach.

- Case Study of SUC with Parametric Input Model
- Case Study of SUC with Nonparametric Input Model
- Oase Study of Two-Phase Optimization Procedure

Case Study of SUC with Parametric Input Model

- Suppose the distribution of wind power ξ_t for t-th hour in the past r days is the same, $\xi_t \sim N(\mu_t, \phi_t^2)$ with ϕ_t proportional to μ_t .
- Suppose the true mean μ_t is unknown and estimated by the data from past r days.
- We compare the performance of proposed data-driven SUC with the empirical SUC.
 - Data-driven SUC: $\sum G^p = \sum_{d=1}^{n_d} G(\mathbf{u}_d^{\star p})$ based on F^p
 - Empirical SUC: $\sum G^e = \sum_{d=1}^{n_d} G(\mathbf{u}_d^{\star e})$ based on \widehat{F}

- We set the scenarios size S = 50 and let $n_d = 20$ days, r = 1.
- The proposed data-driven SUC has better performance than the empirical SUC.
- The advantage tends to be larger as the wind power penetration becomes higher.

	$\sum G^p$	$\sum G^e$
$\phi_t = 5\%\mu_t$	2,002,300	2,320,620
$\phi_t = 10\% \mu_t$	2,175,780	2,445,560
$\phi_t = 20\% \mu_t$	2,151,380	2,710,900

Case Study of SUC with Nonparametric Input Model

- We use the real-world wind power data to compare data-driven SUC having IMSAR model with empirical SUC having probabilistic persistent model.
- We consider the intra-day market with the planning horizon length $n_h = 4$ hours. All three generators are fast start generators.
- Since F^c is unknown, the real dispatch cost is used for evaluation,

$$G^{r}(\mathbf{u}_{dh_t}) \equiv C_1 \mathbf{u}_{dh_t} + \min_{\mathbf{y}} C_2 \mathbf{y}(\mathbf{u}_{dh_t}, \boldsymbol{\xi}_{dh_t^+}^r)$$

where $\pmb{\xi}^r_{dh^+_t} \equiv \left(\xi_{d(h_t+1)}, \dots, \xi_{d(h_t+n_h)}\right)$ is the wind power realizations.

• We compare the accumulated costs obtained by data-driven SUC and empirical SUC, $\sum G_r^p \equiv \sum_{d=1}^{n_d} \sum_{h_t=1}^6 G^r(\mathbf{u}_{dh_t}^{\star p})$ and $\sum G_r^e \equiv \sum_{d=1}^{n_d} \sum_{h=1}^6 G^r(\mathbf{u}_{dh}^{\star e})$.

Data-driven SUC can lead to the lower expected cost than the empirical SUC, $\sum G_r^p \leq \sum G_r^e$.

Table 1: Aggregated total costs of October month operation.

	Total Cost
Data-Driven SUC with IMSAR model $\sum G_r^p$	2,822,705
Empirical SUC with Persistence model $\sum G_r^e$	2,969,178

Case Study of Two-Phase Optimization Procedure

We plot the scatter plot of $G^p(\widehat{\mathbf{u}}_1^{\star}), \ldots, G^p(\widehat{\mathbf{u}}_L^{\star})$ with $\widehat{\mathbf{u}}_1^{\star}, \ldots, \widehat{\mathbf{u}}_L^{\star}$ obtained with SAA approximated SUC (S=50 scenarios and L=50 CPUs)

	mean	SE
Classical SUC approach	113480	6474
Our procedure with $T=500$ and $\Delta T=100$	100370	4685
Our procedure with $T=1000$ and $\Delta T=50$	101044	4776
Our procedure with $T=1000$ and $\Delta T=100$	94081	3851
Our procedure with $T=1000$ and $\Delta T=200$	100414	4846
Our procedure with $T=2000$ and $\Delta T=100$	99715	4753

The average running time used to solve for each $\widehat{\mathbf{u}}_{\ell}^{\star}$ is 1341 seconds, while the time for the second phase selection is around 50 seconds, which is negligible.

Conclusions

- We propose a data-driven SUC and optimization procedure that leads to the optimal unit commitment decision hedging against
 - wind power inherent stochastic uncertainty,
 - input model estimation uncertainty,
 - finite sampling error induced by SAA.
- The case studies demonstrate:
 - The proposed data-driven SUC has better performance than the empirical SUC.
 - The proposed two-phase optimization procedure can efficiently use parallel computing to control the impact of finite sampling error.